
www.manaraa.com

Chapter 3Fitness Landscapes and MemeticAlgorithm Design

Peter Merz and Bernd FreislebenDepartment of Electrical Engineering and Computer Science (FB 12)University of Siegen, H�olderlinstr. 3, D{57068 Siegen, GermanyE-Mail: fpmerz,freislebg@informatik.uni-siegen.de

3.1 IntroductionThe notion of �tness landscapes has been introduced to describe the dynamics of evolution-ary adaptation in nature [40] and has become a powerful concept in evolutionary theory.Fitness landscapes are equally well suited to describe the behavior of heuristic searchmethods in optimization, since the process of evolution can be thought of as searching acollection of genotypes in order to �nd the genotype of an organism with highest �tnessand thus highest chance of survival.Thinking of a heuristic search method as a strategy to \navigate" in the �tness land-scape of a given optimization problemmay help in predicting the performance of a heuristicsearch algorithm if the structure of the landscape is known in advance. Furthermore, theanalysis of �tness landscapes may help in designing highly e�ective search algorithms. Inthe following we show how the analysis of �tness landscapes of combinatorial optimizationproblems can aid in designing the components of memetic algorithms. However, someof the presented concepts can also be utilized for the development of other search algo-rithms, including genetic algorithms and neighborhood search algorithms (e.g. simulatedannealing and tabu search).3.2 Fitness Landscapes of Combinatorial ProblemsIn combinatorial optimization, the number of (candidate) solutions of a given problemis �nite. Due to the fact that the complete enumeration of the search space is in manycases impractical (many combinatorial optimization problems are known to be NP-hard[12]), only a small fraction of all solutions can be evaluated and thus the structure ofthe problem must be exploited to �nd optimum or near optimum solutions. To identifythe structure of a given problem, the idea of �tness landscape analysis appears to be apromising approach.
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3.2.1 Combinatorial Optimization ProblemsAn example of a combinatorial optimization problem addressed in this chapter is thefamous traveling salesman problem (TSP) in which a salesman tries to �nd a shortestclosed tour to visit a set of N cities under the condition that each city is visited exactlyonce [19]. Thus, the TSP consists of �nding a permutation � of the set f1; 2; 3; : : : ; ngthat minimizes the quantityC(�) = n�1Xi=1 d�(i);�(i+1) + d�(n);�(1) (3.1)where dij denotes the distance between city i and j.Another well-known combinatorial optimization problem is the graph bi-partitioningproblem (GBP), which can be stated as follows. Given a undirected Graph G = (V;E),the GBP is to �nd a partition of the nodes in two equally sized sets such that the numberof edges between nodes in the di�erent sets is minimized. More formally, the problem isto minimizec(V1; V2) = je(V1; V2)j; with e(V1; V2) = f(i; j) 2 E : i 2 V1 ^ j 2 V2g; (3.2)where c(V1; V2) is referred to as the cut size of the partition.In the quadratic assignment problem (QAP), n facilities have to be assigned to nlocations at minimum cost. Given a set �(n) of all permutations of f1; 2; : : : ; ng and twon� n matrices A = (aij) and B = (bij), the task is to minimize the quantityC(�) = nXi=1 nXj=1 aij b�(i)�(j); � 2 �(n): (3.3)Matrix A can be interpreted as a distance matrix, i.e. aij denotes the distance betweenlocation i and location j, and B is referred to as the 
ow matrix, i.e. bkl represents the
ow of materials from facility k to facility l. The TSP and the GBP are special cases ofthe QAP.The NK-model of Kau�man [16, 17] de�nes a family of �tness landscapes which canbe tuned by two parameters: N and K. While N determines the dimension of the searchspace, K speci�es the degree of epistatic interactions of the genes constituting a genome.Each point in the �tness landscape is represented by a bit string of length N and canbe viewed as a vertex in the N -dimensional hypercube. The �tness f of a point b =(b1; : : : ; bN ) is de�ned as follows:f(b) = 1N NXi=1 fi(bi; bi1 ; : : : ; biK ); (3.4)where the �tness contribution fi of gene i depends on the allele of gene bi and the allelesof K other genes bi1 ; : : : ; biK . The function fi : f0; 1gK+1 ! IR assigns a uniformlydistributed random number between 0 and 1 to each of its 2K+1 inputs. The values fori1; : : : ; iK are chosen randomly from f1; : : : ; Ng.3.2.2 Fitness Landscape De�nitionTo de�ne a �tness landscape for a given problem instance, a real valued �tness has to beassigned to each of the solutions s 2 S of the search space. Furthermore, we need to �nd2
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an arrangement of the solutions or genotypes in the genotypical space to form a landscape.The spatial structure of the landscape can be de�ned by a metric d, which assigns to eachpair of solutions a distance value d(�; �).More formally, a �tness landscape of a problem instance for a given combinatorialoptimization problem is a triple L = (S; f; d) and consists of a set of points (solutions) S,a �tness function f : S ! IR, which assigns a real{valued �tness to each of the points inS and a distance metric d : S � S ! IR, for which it is required thatd(s; t) � 0; d(s; t) = 0, s = t; d(s; t) � d(s; u) + d(u; t) 8s; t; u 2 S:Furthermore, dmin � d(s; t) � dmax 8 s; t 2 S ^ s 6= t: The �tness landscape can beinterpreted as a graph GL = (V;E) with vertex set V = S and edge set E = f(s; s0) 2S � S j d(s; s0) = dming. The diameter of the landscape is the maximum distance betweentwo points in the graph and is denoted diam GL, thus dmax = diam GL. The topologyof the graph is, of course, problem dependent, e.g. for NK-landscapes the graph is aHamming graph, for the graph bi{partitioning problem the graph is a Johnson graph, andfor the traveling salesman problem the graph is a Cayley graph (see [35] for details).For any instance of a given problem, there are many �tness landscapes, since manymetrics can be de�ned on the set of all solutions to a given problem. The easiest andmost straightforward de�nition of a distance function may be the following. Consider anelementary operator ! that transforms a solution s into a solution s0. The associateddistance metric d!(s; t) is de�ned as the minimum number of applications of ! required toobtain t from s. Usually, the operator modi�es a solution only slightly, e.g. by changing ofa single gene of the genotype. For example, in binary coded problems, such an operator isthe bit{
ip operator which 
ips one bit at a time. To obtain one solution from the other,all di�ering bits have to be 
ipped, one by one. The number of times the bit{
ip operatorhas to be applied is the number of di�erent bits, and the distance metric induced by theoperator is known as the Hamming distance dH(x; y) =Pi xi � yi between bit vectors.In the TSP, for example, an elementary operator is the edge{exchange operator whichexchanges two edges contained in the current solution by two new edges maintainingfeasibility. Applied twice, the operator generates a solution that has either zero, threeor four edges not contained in the original tour, depending on the choice of the edgesin the second application of the operator. If one or two edges are removed that havepreviously been inserted, the number of di�erent edges is less than 4. So, instead ofcounting the number of applications of the edge-exchange operator, the number of di�erentedges between two tours appears to be a better suited distance measure for the TSP.3.2.3 Properties of Fitness LandscapesFor both performance prediction and memetic algorithm design, it becomes crucial toidentify the characteristics of landscapes that have in
uence on the e�ectiveness of heuristicsearch methods.The following properties of landscapes are known to have strong in
uence on heuristicsearch:� the �tness di�erences between neighboring points in the landscape (ruggedness),� the number of local optima (peaks in the landscape),� the distribution of the local optima in the search space, and3
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� the topology of the basins of attraction of the local optima.Several methods have been proposed to \measure" these properties. Some of them arepresented in the following.Autocorrelation Functions of Fitness LandscapesThe landscape ruggedness is an important property, since a smooth landscape where �t-ness varies only slightly along a random walk (the random application of an elementaryoperator) can be easily optimized by heuristic search algorithms. If small moves in alandscape lead to high �tness changes, the landscape is said to be rugged.To measure the ruggedness of a �tness landscape, several methods have been proposed,for example the correlation functions proposed by Weinberger [38]. The autocorrelationfunction [34, 38] is de�ned as�(d) = hf(x)f(y)id(x;y)=d � hfi2hf2i � hfi2 (3.5)where hxi denotes the mean of all xi (hxi = 1N PNi=1 xi). It de�nes the correlation of pointsat distance d in the search space.Alternatively, Weinberger suggested to use random walks to investigate the correlationstructure of a landscape. The random walk correlation function [35, 36, 38]r(s) = hf(xt)f(xt+s)i � hfi2hf2i � hfi2 (3.6)of a time series ff(xt)g de�nes the correlation of two points s steps away along a randomwalk through the �tness landscape. Based on these de�nitions, the correlation length `[36] of the landscape can be de�ned as` = � 1ln(jr(1)j) = � 1ln(j�(1)j) (3.7)for r(1); �(1) 6= 0. If the landscape is statistically isotropic, i.e. the time series ff(xt)gforms a stationary random process, then a single random walk is su�cient to obtain r(s).If a time series is isotropic, Gaussian and Markovian, then the corresponding landscape iscalled AR(1) landscape, and the random walk correlation function is of the form r(s) =r(1)s = exp(�s=`) with ` being the correlation length of the landscape. For example,AR(1) landscapes are found in the NK-model and the TSP [38]. Figure 3.1 shows r(s)for an AR(1) landscape of the instance tai100a of the QAP.The correlation length is a well suited measure for comparing landscapes for a givenproblem instance. The higher the correlation length, the smoother the landscape andhence the easier the search for an algorithm based on the underlying neighborhood ofthe landscape, since neighboring points have a higher correlation. Table 3.1 provides anoverview of various �tness landscapes and their correlation lengths. These were obtainedtheoretically and have been con�rmed by experiments [35, 36].Fractal LandscapesAnother characteristic of �tness landscapes is the connection between correlation and self-similarity. A landscape is said to be fractal if the variance of the di�erence in �tness4



www.manaraa.com

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

ra
nd

om
 w

al
k 

co
rr

el
at

io
n

Step distance

tai100a

Figure 3.1: Random walk correlation function for the QAP instance tai100aTable 3.1: Correlation in �tness landscapes of selected combinatorial optimization prob-lems Problem Metric diam GL jN j `TSP Edge{exchange n� 1 (n� 1)n=2 n=2Node{exchange n� 1 (n� 1)n=2 n=4NK Hamming n n� 1 n=(k + 1)GBP Exchanges n=2 (n� 1)n=2 � n=8�-Flip n n� 1 � n=4between two points in the landscape scales as a power law with their distance from eachother. More formally, a landscape is fractal if hjf(x) � f(y)j2i / d(x; y)2h for all pairsof points (x,y) in the search space. Examples of fractal landscapes with h = 1=2 includeNK-Landscapes, TSP with edge{exchange, and the GBP.Fractal landscapes can be separated into four classes according to Weinberger andStadler [39]. However, it is still unknown how this classi�cation is related to the perfor-mance of heuristic search methods.Landscape Ruggedness and EpistasisFor many combinatorial optimization problems, under a suitable representation, the �tnessor the cost function can be easily decomposed into �tness contribution functions for eachgene of the genome representing a solution of the problem. Such a �tness decompositionallows us to identify the gene interactions of a given representation, or in other words,on which and how many other genes the �tness contribution of each gene depends. Forexample, if f(x) = c � nXi=1 fi(xi; xi1 ; : : : ; xik(i));then the �tness contribution fi depends on the allele (value) xi of gene i and k(i) otheralleles at the loci i1; : : : ; ik(i). Thus, the values k(i) determine the amount of interactionsbetween the genes, called epistasis. In contrast to the model proposed by Davidor [6], whode�nes epistasis variance for functions where such a decomposition is not known or obvious5
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(for example, real valued function optimization using binary encodings), the amount ofgene interaction is derived from the problem and the chosen representation itself, andthere is no need for the use of statistical models.Epistasis can be seen as a measure of problem di�culty since it determines the amountof nonlinearity of the problem. One would expect that for low epistasis search is easy: ifthere is no gene interaction, then there exists only one local optimum, but on the otherhand, if the �tness contribution of a site depends on all other gene values, the �tnesslandscape becomes totally unstructured. It has been shown for NK-landscapes, whereK = k(i) determines the number of interacting genes, that there is one local optimum forK = 0, and the expected number of local optima for K = N � 1 is 2NN+1 . However, highepistasis (in terms of a high average number of interacting genes per locus) is not the onlyproperty making a problem hard to solve. For random geometric instances of the GBP, wehave shown that search becomes easier with increasing epistasis [23], indicating that thenumber of the interactions is not the only important property. The gene interactions canbe viewed as a directed graph (graph of epistatic interactions) with vertices representingthe genes and edges de�ning the dependencies between the genes. An edge (i; j) indicatesthat the �tness contribution at gene j depends on the allele at gene i (fj is of the formfj(: : : ; xi; : : :)). Thus, the average vertex degree re
ects the average number of interactinggenes per locus. We have shown for the GBP that the structure of the graph of epistaticinteractions has a high in
uence on the structure of the �tness landscape.Fitness Distance CorrelationThe �tness distance correlation (FDC) coe�cient has been proposed in [15] as a measurefor problem di�culty for genetic algorithms. The FDC coe�cient % is de�ned as%(f; dopt) = hfdopti � hfihdopti(hf2i � hfi2)(hd2opti � hdopti2) (3.8)and determines how closely �tness and distance to the nearest optimum in the searchspace are related. If �tness increases when the distance to the optimum becomes smaller,then the search is expected to be easy for selection{based algorithms: the optimum cansuccessively be approached via �tter individuals. A value of % = �1:0 (% = 1:0) for amaximization (minimization) problem indicates that �tness and distance to the optimumare perfectly related and that search promises to be easy. A value of % = 1:0 (% = �1:0)means that with increasing �tness the distance to the optimum increases, too.A �tness distance plot can be made to gain insight in the structure of the search spaceinstead of simply calculating the correlation coe�cient. The scatter plot contains muchmore information and can be interpreted easier than the coe�cient and thus has beenrecommended for this type of analysis [15]. The scatter plot is generated by plottingthe �tness of points in the search space against their distance to an optimum or best{known solution. Fitness distance analysis (FDA) has been applied by several researchers,including Kau�man [16] for NK-landscapes, Boese [4] for the TSP, Reeves for a 
ow{shopscheduling problem [32], Moscato for the binary perceptron problem [28], and Merz andFreisleben [23] for the GBP.The disadvantage of the FDA is that the optimum solution has to be known in advance.In many cases, the best known solution can be used instead, since it is an optimum solutionor it lies close to the optimum in the search space. For totally uncorrelated landscapes,6
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replacing the optimum by the best solution found may lead to a totally di�erent �tnessdistance plot, and thus the FDA is of little help for performance prediction.3.2.4 Local Search NeighborhoodsFitness landscapes and local search algorithms are directly related to each other. Localsearch algorithms are characterized by the neighborhoods they depend on. For a given�tness landscape L = (S; f; d) the simplest neighborhood is de�ned by N (s) = fs0 2 S :d(s; s0) = dming: N (s) is the set of all neighboring points of the solution s in the landscapeL. In other words, the neighborhood of a solution s is de�ned as the set of solutions thatcan be obtained by applying the elementary operator ! of the landscape once. Moregenerally, the k-opt neighborhood is de�ned asNk-opt(s) = fs0 2 S : d(s; s0) � kg: (3.9)The 3-opt neighborhood, for example, includes the 2-opt neighborhood and for k = dmaxthe neighborhood is identical to the whole search space. The size of the k-opt neighbor-hoods jNk-optj grows exponentially in k for many combinatorial optimization problems, sousually only neighborhoods with small values for k are used in local search algorithms.3.3 Memetic Algorithm DesignEvolutionary algorithms such as genetic algorithms [13], evolutionary programming [8],evolution strategies [31], and memetic algorithms [27] share the advantage that existingalgorithms can be easily adapted to new problem domains. Only the problem speci�cdetails have to be rewritten, such as the evaluation of the �tness function, the de�nitionof recombination and mutation operators as well as the population initialization function.All other parts of the algorithm do not have to be modi�ed, for example the general frame-work, the parent selection mechanism, the replacement schemes and the data structuresfor storing the individuals of the population. The following steps are thus necessary todesign a memetic algorithm for a new problem domain.Step 1: Find a suitable representation for the candidate solutions of a given problemand an evaluation function for calculating the �tness of a given solutionbased on the representation.Step 2: Find an e�cient local search algorithm.Step 3: Find a suitable initialization method for the initial population.Step 4: De�ne the genetic mutation and recombination operators.3.3.1 Representation and Local SearchFinding a suitable encoding for the solutions of the problem is tightly coupled with �ndinga good elementary operator for local search, since the elementary operator depends onthe representation chosen. The elementary operator de�nes the landscape by inducing adistance metric over all pairs of points in the search space and thus is responsible for theperformance of neighborhood based search. Generally, the elementary operator should7
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only change the elements or genes of a solution slightly, since this often results in a slightchange of �tness. In some cases, however, it is necessary to change many of the genes toachieve a slight change in the �tness values. An example is the inversion operator on bitstrings: here, the order of the bits between two positions is inverted.To compare di�erent combinations of operators and encodings and thus di�erent land-scapes for a given problem, an autocorrelation analysis can be carried out either math-ematically or experimentally. The landscape with the higher correlation length (highercorrelation of neighboring points in the search space) should be preferred over the other[27]. For example, consider two di�erent �tness landscapes for the TSP as listed in Ta-ble 3.1. The landscape with the distance metric based on the elementary operator ofexchanging two cities in the tour has a lower correlation length than the landscape basedon the elementary operator of exchanging edges. It has been shown experimentally thata local search in the latter landscape is much more e�ective in �nding near optimumsolutions than a local search in the former landscape, see for example [33].Another interesting example is the graph bi{partitioning problem. Enlarging the searchspace by allowing infeasible solutions leads to a smoother landscape if a suitable penaltyfunction for reducing the �tness of infeasible solutions is incorporated. Angel and andZissimopoulos [1] have derived a penalty function for which the landscape (�-FLIP) has ahigher correlation length and hence becomes smoother compared to the commonly chosenSWAP landscape (see Table 3.1). Another advantage of the FLIP landscape is that theneighborhood size jN j is lower and hence the time for searching the neighborhood for �tterindividuals is reduced. Again, it has been shown experimentally that a local search basedon the FLIP operator is more e�ective than a local search based on the SWAP operator[1]. Thus, autocorrelation analysis appears to be a suitable approach for comparing �tnesslandscapes considered in step 1 and 2.Large NeighborhoodsAlthough the smallest possible neighborhood for a combinatorial problem is preferable,there are cases where larger neighborhoods can be searched very e�ciently. Considerthe k-opt neighborhoods Nk-opt. All solutions in these sets cannot be examined duringthe search, but there are algorithms that are searching a small subset and are highlye�ective. For example, the Lin-Kernighan heuristic [20] for the TSP and the Kernighan-Lin heuristic [18] for the GBP exchange a variable number of edges and a variable sizeof subsets, respectively. Since in case of the TSP an exchange of k edges is realized byperforming a sequence of exchanges of two edges, the same distance measure can be usedas for 2-opt. Analogously, for the GBP the same distance measure is recommended as forthe SWAP operator. To speed up the running times for k-opt search algorithms, specialdata structures are necessary for large problem sizes. For the TSP, several data structureshave been investigated [9], and for the GBP, a data structure developed by Fiduccia andMattheyses [7] increases the e�ciency of the Kernighan-Lin heuristic tremendously.3.3.2 Generating Starting SolutionsIn evolutionary algorithms, the starting solutions are usually generated in a purely randomfashion. Hence, it is straightforward to do this in memetic algorithms, too. To operateon locally optimal solutions, after generation of the starting solutions a local search isapplied to each solution. However, to exploit the structure of the problem, randomized8
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heuristics can be used that (a) produce a large variety of solutions, and (b) are good fora combination with local search. The advantage is two-fold: �rst, the combination ofa construction heuristic and local search may produce better solutions, and second, thecombination may be faster than applying local search to randomly selected points in thelandscape, since the number of iterations of the local search is reduced due to the muchbetter starting point generated by the heuristic.Greedy heuristics are often good candidates for the construction of feasible solutions.Viewing a solution of a combinatorial optimization problem as a genome of length jxj = n(n denoting the problem size), a greedy heuristic determines in each step an allele value fora selected location in a genome without violating the feasibility constraints of the problem.After n steps, all genes have their values assigned and a feasible solution is constructed.Which allele and which location is chosen depends on a greedy selection criterion aimedto optimize the objective function.Epistasis and Greedy HeuristicsThe e�ectiveness of a greedy heuristic depends highly on the non{linearity of the problem.If epistasis is high, then the choice of a gene value at a step in the construction heuristicstrongly in
uences the future choices of the remaining locations in the genome that havenot been assigned. A wrong greedy choice at an early stage of the algorithm has fatalconsequences and may lead to a low �tness. On the other hand, if epistasis is low, anunfavorable decision has a much smaller in
uence on the overall �tness of the solutionbeing built, since most decisions in the future of the algorithm are not a�ected. In theextreme case where no interactions are present and hence the choice of a gene value ineach step is independent of the choices in the other steps, the greedy algorithm is ableto �nd the global optimum. Thus, for problems with low epistatic interactions, a greedyalgorithm is preferable to a purely random generation of solutions.The TSP is a good example where a greedy heuristic works extremely well in com-bination with local search. Due to the feasibility constraints of the problem, in the laststeps of the algorithm arbitrarily long edges are included in the tour constructed, but alocal search is able to compensate this e�ect. The greedy heuristic [19] has been shown tobe superior to all other heuristics when combined with local search [14, 33]. Furthermore,the number of iterations of the local search is reduced compared to random starting tours,since many short edges are already contained in the tour and have not to be discoveredby local search.Fitness Distance AnalysisThe initial population is important for the performance of a population based algorithm, sospecial attention has to be paid when creating it. To investigate how the points representedby the initial population are distributed in the search space relative to the optimumsolution, an analysis of the �tness distance correlation can be performed. The �tnessdistance plots can help in comparing heuristic construction algorithms and local search,and can provide hints of how the memetic algorithm will perform. For example, the �tnessdistance plots of some GBP instances show the e�ectiveness of a greedy heuristic calledDi�erential Greedy [2] compared to the Kernighan-Lin local search on structured graphs(instances with low epistasis), as shown in Figure 3.2.Instead of the �tness, the cut size di�erence �c(x) = c(x) � copt is plotted in the �gure(note that the GBP is a minimization problem). The plots on the left representing 25009
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Figure 3.2: Cut size di�erence vs. distance to optimum for Kernighan-Lin local optima(left) and Di�-Greedy solutions (right)local optima produced by the Kernighan-Lin heuristic show a much lower correlation thanthe plots on the right produced by the di�erential greedy heuristic. In case of graphCat.5252 there is no correlation of the local optima. In both cases, the objective valuesof the solutions produced by di�erential greedy are much closer to the optimum than incase of the Kernighan-Lin solutions.But there are also graphs for which the greedy heuristic does not perform better thanthe local search, as shown in Figure 3.3. The �rst graph G1000.0025 is an unstructuredrandom graph. Here, Kernighan-Lin solutions and di�erential greedy solutions are dis-tributed similarly in the search space. The second graph is a random geometric graphU1000.40 with high epistasis. Here, only few Kernighan-Lin local minima exist and thechance to hit the global optimum is high, thus the Kernighan-Lin heuristic appears to besuperior to the greedy approach.Since the greedy strategy is good for problems with low epistasis and the Kernighan-Lin approach is better for structured problems with high epistasis, the combination ofboth is a good way to produce the initial population for the GBP.As shown above, �tness distance analysis can help in �nding the best initializationmethods for a given problem. However, to compare algorithms, the analysis must beperformed for each problem instance, and the optimum solution or a near optimum solutionmust be known.
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Figure 3.3: Cut size di�erence vs. distance to optimum for Kernighan-Lin local optima(left) and Di�-Greedy solutions (right)3.3.3 Genetic OperatorsIn a memetic algorithm framework, mutation and recombination operators act as diversi�-cation strategies. By utilizing the information contained in the population { the individualsin the population may be located in a region of the search space containing local optimawith high �tness { new starting points for a local search have to be discovered leading toeven better local optima. Recombination and mutation operators hence perform jumps inthe search space, leading from a local optimum away to a new point from which the nexthill is climbed or (for minimization) the next valley is explored, as illustrated in Figure 3.4for the TSP.
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design of mutation and recombination operators is discussed in the following.MutationMutation is an unary operator and has to be performed so that the subsequently appliedlocal search does not revisit the parent solution by falling back into the same local opti-mum. The optimal jump distance depends at least on one property of the search space:the size of the attractor region of the current local optimum. For some landscapes it hasbeen shown that the correlation length ` of a landscape is related to the average distancebetween local optima: in these landscapes there is one local optimum in a ball of radiusR(`), where R(s) denotes the expected distance of the start and end point of a simplerandom walk of s steps. Since the direction of the jump is random, no other propertiescan be exploited with the unary operator.RecombinationRecombination is a binary operator, and hence a jump can be performed with a prede�neddirection. In genetic algorithms, recombination is performed in analogy to biology bycrossing over two parent bit vectors at a randomly selected position. Another widelyused recombination mechanism is known under the name uniform crossover. Uniformcrossover is a more general form of recombination, and single{point or k{point crossoverare special cases [37]. These crossover techniques applied to binary vectors have thefollowing properties:(i) The bit values for the locations that are identical in both parents are preserved inthe o�spring.(ii) The hamming distance dH between the parents x and y and the o�spring z are loweror equal to the distance between the parents. Furthermore, dH(x; z) + dH(z; y) =dH(x; y).For permutation search spaces, the �rst property can easily be ful�lled while the secondcan not. However, if (i) is obeyed, the following holds for all parents x and y and o�springz: d(z; x) � d(x; y) and d(z; y) � d(x; y), and furthermore d(x; z) + d(z; y) � 2 � d(x; y).Following Radcli�e's and Surry's terminology [30, 29], a recombination operator obeying(i) is called respectful, while an operator obeying (ii) is called assorting. Recombinationoperators which ful�ll (i) or even (ii) produce o�spring that are contained in a region ofthe search space spanned by the two parents. The size of the region decreases duringevolution since the individuals of the population move closer together from generationto generation. Hence, the direction of the jumps produced by respectful recombinationoperators is oriented towards a region between the parents, and the jump distance changesdynamically during the search.Fitness Distance AnalysisTo address the question of how a distance �tness analysis can help in designing geneticoperators, it is instructive to look at some very di�erent �tness landscapes. In Figure 3.5plots are provided for landscapes of several combinatorial problems.The �rst two plots (Cat.5252 and Breg5000.16) are taken from the analysis of instancesof the GBP, and the second two are results of a �tness distance analysis for a TSP (att532)12
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Figure 3.5: Correlation of local optima for various combinatorial optimization problemsand a quadratic assignment problem (QAP) (tai80a) instance, respectively. In all plots,2500 local optima are displayed relative to the optimum or best-known solutions for theproblem. While the �rst plot (Cat.5252) does not show correlation between �tness anddistance, the second one (Breg5000.16) shows perfect correlation (% = 0:02 and % = 0:99,respectively). In the �rst case, the local optima have an average distance of nearly themaximum distance of the search space between each other. Hence, the local optima areuniformly distributed in the search space. Regarding the distribution of local optima, thesearch space does not exhibit a structure that could be exploited. The second landscapeof the GBP is ideal for memetic algorithms. There is a \path" to the global optimumfrom all local optima via �tter local optima. With increasing �tness (decreasing cut size),the local optima are closer to the global optimum. The �tness distance plot for the TSPlandscape (att532) shows a correlation between �tness and distance to the optimum.Furthermore, the local optima are found in a small fraction of the search space, and theyappear to be relatively close together. In this case, the maximum distance between twolocal optima is smaller than 1=3 of the maximum distance of the landscape. This landscapeand the second landscape of the GBP (Breg5000.16) exhibit a structure that is calledthe big valley structure [4]: the global optimum lies more or less central in the subspacecontaining the local optima. The last plot shows the relation between �tness and distanceto the optimum of a typical QAP instance (tai80a). Here, points with optimum or nearoptimum �tness are arbitrarily far away from each other and most of the solutions havemaximum distance to the optimum.
13
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Choice of OperatorsIf the landscape is structured, recombination operators are preferable over mutation op-erators since they are able to exploit the structure. Big valley characteristics are bestexploited by directed jumps performed by respectful recombination operators, while theseoperators are not e�ective if the structure is missing. We have shown that for NK-landscapes with high epistasis mutation becomes favorable over crossover [24]. As shownin [26], for unstructured GBP instances (high epistasis) this also holds. We have madeadditional experiments for the TSP and for the QAP to show the relation between land-scape structure and operator e�ectiveness. Table 3.2 shows the results for the TSP andTable 3.3 for the QAP, respectively. For the TSP, the average number of generations (gen)and the average time in seconds (t/s) to reach the optimum in 30 of 30 runs is provided.For the QAP, the average number of generations (gen), the best cost found averaged over30 runs, and the time in seconds after the algorithm was terminated is given.Table 3.2: Crossover vs. mutation based MA on 4 TSP instancesDPX MutationInstance tour length gen t/s gen t/slin318 42029 (opt) 68 25 31 38pcb442 50778 (opt) 99 35 92 63att532 27686 (opt) 452 131 280 230rat783 8806 (opt) 156 61 217 88As expected, for the TSP, recombination is preferable to mutation, while for the QAPmutation outperforms recombination{based search.Table 3.3: Crossover vs. mutation based MA on 5 QAP instancesDPX MutationInstance gen avg. cost (quality) gen avg. cost (quality) t/ssko100a 16667 152804.6 ( 0.53%) 993 152210.4 ( 0.14%) 1800tai100a 765 21667111.8 ( 2.56%) 1551 21366635.6 ( 1.14%) 1800tai150b 244 504998950.4 ( 1.22%) 629 500976809.6 ( 0.42%) 3600tho150 8936 8161583.4 ( 0.34%) 718 8150674.6 ( 0.21%) 3600tai256c 875 44858227.6 ( 0.22%) 3431 44785102.8 ( 0.06%) 3600In both cases, the recombination operator is the distance preserving crossover operatorDPX [11, 21]. The operator is respectful but also highly disruptive: the distance of thejumps performed in the search space equals the distance between the two parents. Thelocal search algorithm used for the TSP is the Lin{Kernighan heuristic [20] and a simple2-opt local search has been used for the QAP. Mutation is performed with a non{sequentialfour{change [20] in case of the TSP, and with a random mutation of jump distance d = 30in case of the QAP. 14
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3.4 Memetic Algorithm PerformanceMemetic algorithms, in particular evolutionary algorithms incorporating local search, havebeen shown to outperform many other heuristic search algorithms for various problems:for the TSP, our memetic algorithm, also called genetic local search, has been shown to beone of the most e�ective algorithms [3, 10, 22] { a predecessor of our improved approachhas won the �rst international contest on evolutionary optimization (1st ICEO) [3]. Theresults presented in Table 3.2 are even better than previously published [22]. In case ofthe QAP, our approach works extremely well and appears to be superior to tabu search,ant colonies, simulated annealing and also scatter search [21, 25, 5]. For NK-landscapeswe have shown that genetic local search is superior to genetic algorithms and multi{startlocal search [24]. Recently, we have shown for the GBP that our memetic algorithm issuperior to other hybrid evolutionary approaches, simulated annealing, and in almost allcases superior to tabu search [26].3.5 ConclusionsIn this chapter, we have presented techniques to analyze combinatorial optimization prob-lems to design highly e�ective search algorithms with special emphasis on memetic al-gorithms. The presented autocorrelation functions of �tness landscapes are well suitedto determine the local structure of a landscape and thus help in �nding preferable rep-resentations and local search neighborhoods for a memetic algorithm. In particular, thecorrelation length of a landscape has been shown to be a good indicator for the e�ec-tiveness of representations in combination with local search. The correlation length of alandscape is based on the correlation of neighboring points in the search space and can bedetermined either mathematically or experimentally. The higher the correlation length,the better the performance of a local search.On the other hand, �tness distance analysis (FDA) is suited for analyzing the globalstructure of a landscape. The distribution of local optima is important in memetic algo-rithm design because if a certain structure is present, it should be exploited by the geneticoperators used in the approach. The conducted experiments have shown that if �tnessand distance to the optimum are correlated, recombination operators are preferable tomutation operators. If no structure in the distribution can be observed, a mutation{basedapproach appears to be superior to recombination.Furthermore, FDA can be utilized to �nd suitable heuristics for initialization of thepopulation. FDA allows a comparison of heuristics in terms of ability to adequately samplethe search space and to predetermine promising features of solutions to a problem.However, our studies of landscapes of the graph bi{partitioning problem have shownthat it is dangerous to perform FDA for only one type of instance of a given optimizationproblem. The results may not be generalized to other types of instances: some instancesof the graph bi{partitioning problem show a high correlation between �tness and distanceto the optimum, while for others no correlation could be observed.Epistasis has been considered as an indicator of the hardness of an optimization prob-lem. Our studies on the graph bi{partitioning problem have shown that the concept ofmodeling gene interactions by a graph of epistatic interactions can help in understandingthe in
uence of epistasis on heuristic search.Future work should address the question of how to design recombination operators thatcan best exploit certain properties of landscapes. Furthermore, it is desirable to be able to15
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predict the optimum jump distances for mutation operators in unstructured landscapes.Here, we believe the correlation length of a landscape can be utilized bene�cially.Other statistical properties may be useful to predict the performance of memetic algo-rithms. For example, it should be investigated how the classi�cation of fractal landscapesproposed by Weinberger and Stadler [39] can help in classifying problems in terms ofhardness for optimization algorithms.

16



www.manaraa.com

Bibliography[1] E. Angel and V. Zissimopoulos, \Autocorrelation Coe�cient for the Graph Biparti-tioning Problem," Theoretical Computer Science, vol. 191, pp. 229{243, 1998.[2] R. Battiti and A. Bertossi, \Di�erential Greedy for the 0{1 Equicut Problem," inProceedings of the DIMACS Workshop on Network Design: Connectivity and Facili-ties Location, (D. Du and P. Pardalos, eds.), American Mathematical Society, 1998.to appear.[3] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. Gambardella, \Results of theFirst International Contest on Evolutionary Optimisation (1st ICEO)," in Proceedingsof the 1996 IEEE International Conference on Evolutionary Computation, (Nagoya,Japan), pp. 611{615, 1996.[4] K. Boese, \Cost versus Distance in the Traveling Salesman Problem," Tech. Rep. TR-950018, UCLA CS Department, 1995.[5] V.-D. Cung, T. Mautor, P. Michelon, and A. Tavares, \A Scatter Search BasedApproach for the Quadratic Assignment Problem," in Proceedings of the 1997IEEE International Conference on Evolutionary Computation (ICEC), (T. Baeck,Z. Michalewicz, and X. Yao, eds.), (Indianapolis, USA), pp. 165{170, IEEE Press,1997.[6] Y. Davidor, \Epistasis Variance: Suitability of a Representation to Genetic Algo-rithms," Complex Systems, vol. 4, no. 4, pp. 369{383, 1990.[7] C. M. Fiduccia and R. M. Mattheyses, \A Linear-Time Heuristic for Improving Net-work Partitions," in Proceedings of the 19th ACM/IEEE Design Automation Confer-ence DAC 82, pp. 175{181, 1982.[8] L. J. Fogel, A. J. Owens, and M. J. Walsh, Arti�cial Intelligence through SimulatedEvolution. New York: John Wiley & Sons, 1966.[9] M. L. Fredman, D. S. Johnson, L. A. McGeoch, and G. Ostheimer, \Data Structuresfor Traveling Salesmen," Journal of Algorithms, vol. 18, pp. 432{479, 1995.[10] B. Freisleben and P. Merz, \A Genetic Local Search Algorithm for Solving Symmetricand Asymmetric Traveling Salesman Problems," in Proceedings of the 1996 IEEEInternational Conference on Evolutionary Computation, (T. B�ack, H. Kitano, andZ. Michalewicz, eds.), pp. 616{621, IEEE Press, 1996.[11] B. Freisleben and P. Merz, \New Genetic Local Search Operators for the TravelingSalesman Problem," in Proceedings of the 4th International Conference on Parallel17



www.manaraa.com

Problem Solving from Nature - PPSN IV, (H.-M. Voigt, W. Ebeling, I. Rechenberg,and H.-P. Schwefel, eds.), pp. 890{900, Springer, 1996.[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theoryof NP-Completeness. Freeman, New York, 1979.[13] J. Holland, Adaptation in Natural and Arti�cial Systems. University of MichiganPress, 1975.[14] D. S. Johnson and L. A. McGeoch, \The Traveling Salesman Problem: A Case Study,"in Local Search in Combinatorial Optimization, (E. H. L. Aarts and J. K. Lenstra,eds.), pp. 215{310, Wiley and Sons, New York, 1997.[15] T. Jones and S. Forrest, \Fitness Distance Correlation as a Measure of ProblemDi�culty for Genetic Algorithms," in Proceedings of the 6th International Conferenceon Genetic Algorithms, (L. J. Eshelman, ed.), pp. 184{192, Morgan Kaufmann, 1995.[16] S. A. Kau�man, The Origins of Order: Self-Organization and Selection in Evolution.Oxford University Press, 1993.[17] S. A. Kau�man and S. Levin, \Towards a General Theory of Adaptive Walks onRugged Landscapes," Journal of Theoretical Biology, vol. 128, pp. 11{45, 1987.[18] B. Kernighan and S. Lin, \An E�cient Heuristic Procedure for Partitioning Graphs,"Bell Systems Journal, vol. 49, pp. 291{307, 1972.[19] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The TravelingSalesman Problem: A Guided Tour of Combinatorial Optimization. New York: Wileyand Sons, 1985.[20] S. Lin and B. Kernighan, \An E�ective Heuristic Algorithm for the Traveling Sales-man Problem," Operations Research, vol. 21, pp. 498{516, 1973.[21] P. Merz and B. Freisleben, \A Genetic Local Search Approach to the QuadraticAssignment Problem," in Proceedings of the 7th International Conference on GeneticAlgorithms, (T. B�ack, ed.), pp. 465{472, Morgan Kaufmann, 1997.[22] P. Merz and B. Freisleben, \Genetic Local Search for the TSP: New Results," in Pro-ceedings of the 1997 IEEE International Conference on Evolutionary Computation,(T. B�ack, Z. Michalewicz, and X. Yao, eds.), pp. 159{164, IEEE Press, 1997.[23] P. Merz and B. Freisleben, \Memetic Algorithms and the Fitness Landscape of theGraph Bi-Partitioning Problem," in Proceedings of the 5th International Conferenceon Parallel Problem Solving from Nature - PPSN V, (A.-E. Eiben, T. B�ack, M. Schoe-nauer, and H.-P. Schwefel, eds.), pp. 765{774, Springer, 1998.[24] P. Merz and B. Freisleben, \On the E�ectiveness of Evolutionary Search in High{Dimensional NK-Landscapes," in Proceedings of the 1998 IEEE International Con-ference on Evolutionary Computation, (D. Fogel, ed.), pp. 741{745, IEEE Press, 1998.[25] P. Merz and B. Freisleben, \Fitness Landscape Analysis and Memetic Algorithms forthe Quadratic Assignment Problem," Tech. Rep. 99-02, University of Siegen, Ger-many, 1999. 18



www.manaraa.com

[26] P. Merz and B. Freisleben, \Fitness Landscapes, Memetic Algorithms and GreedyOperators for Graph Bi-Partitioning," Evolutionary Computation, 1999, to appear.[27] P. Moscato, \On Evolution, Search, Optimization, Genetic Algorithms and MartialArts: Towards Memetic Algorithms," Tech. Rep. Caltech Concurrent ComputationProgram, Report. 826, California Institute of Technology, Pasadena, California, USA,1989.[28] P. Moscato, \An Introduction to Population Approaches for Optimization and Hi-erarchical Objective Functions: The Role of Tabu Search," Annals of OperationsResearch, vol. 41, no. 1-4, pp. 85{121, 1993.[29] N. Radcli�e and P. Surry, \Fitness Variance of Formae and Performance Predic-tion," in Proceedings of the Third Workshop on Foundations of Genetic Algorithms,(L. Whitley and M. Vose, eds.), (San Francisco), pp. 51{72, Morgan Kaufmann, 1994.[30] N. Radcli�e and P. Surry, \Formal Memetic Algorithms," in Evolutionary Computing:AISB Workshop, (T. Fogarty, ed.), pp. 1{16, Springer-Verlag, Berlin, 1994.[31] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipiender biologischen Evolution. Stuttgart: Frommann-Holzboog, 1973.[32] C. R. Reeves, \Landscapes, Operators and Heuristic Search," Annals of OperationsResearch, 1998. To appear.[33] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications.Vol. 840 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany,1994.[34] P. F. Stadler, \Correlation in Landscapes of Combinatorial Optimization Problems,"Europhys. Lett., vol. 20, pp. 479{482, 1992.[35] P. F. Stadler, \Towards a Theory of Landscapes," in Complex Systems and Bi-nary Networks, (R. Lop�ez-Pe~na, R. Capovilla, R. Garc��a-Pelayo, H. Waelbroeck,and F. Zertuche, eds.), (Berlin, New York), pp. 77{163, Springer Verlag, 1995. SFIpreprint 95-03-030.[36] P. F. Stadler, \Landscapes and their Correlation Functions," J. Math. Chem., vol. 20,pp. 1{45, 1996. SFI preprint 95-07-067.[37] G. Syswerda, \Uniform Crossover in Genetic Algorithms," in Proceedings of the ThirdInternational Conference on Genetic Algorithms, pp. 2{9, Morgan Kaufman, 1989.[38] E. D. Weinberger, \Correlated and Uncorrelated Fitness Landscapes and How to Tellthe Di�erence," Biological Cybernetics, vol. 63, pp. 325{336, 1990.[39] E. D. Weinberger and P. F. Stadler, \Why Some Fitness Landscapes are Fractal," J.Theor. Biol., vol. 163, pp. 255{275, 1993.[40] S. Wright, \The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evo-lution," in Proceedings of the Sixth Congress on Genetics, p. 365, 1932.19


